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1) One defines a set X each point of which represents an infinite system of similar components.
Examples: A configuration of infinitely many unit cubes in R

3; a simple graph on infinitely many
nodes, . . .

2) There are projections of each point in X onto ‘finite subsystems’ labelled by v.
Examples: Those cubes intersecting the ball centered at the origin of R3 and radius v; the subgraph
induced by the nodes in v = {1, 2, . . . , |v|}, . . .

3) One chooses a few ‘competing constraints’ ǫ.
Examples: Cube configurations with given volume fraction and given density of ‘energy of inter-
action’; graphs with given edge and triangle densities, . . .
The set of possible vector values of ǫ constitutes a constraint (‘phase’) space Y, the boundary of
which obviously corresponds to extrema of the constraints.

4) One computes the number or volume Zv(ǫ) of constrained projected configurations, and its expo-
nential rate of growth s(ǫ) = lim|v|→∞(1/|v|) log[Zv(ǫ)].
(I’ve cheated by leaving out the step of thickening the constraints by α and then taking α → 0
after the limit in v.)

5) There is a simple real valued function R on a (relevant, ‘probabilistic’) space Fǫ such that s(ǫ) =
R(µǫ) for one or more ‘equilibrium states’ µǫ in Fǫ. The µǫ are characterized alternatively by
(local) DLR equations, or as maximizers of R(µ) among all µ in Fǫ.
(The µǫ give a much richer picture of the system than the function s(ǫ).)

Notes on the above

i) Both characterizations in 5) of equilibrium states µǫ were proven, for stat mech ‘on lattices’, in
the 1960’s. However for more realistic models, such as particles or cubes in a continuum such as
R

3, the DLR characterization of µe was proven by Dobrushin and Lanford/Ruelle around 1969 but
I don’t believe the variational characterization was ever proven for such systems. For graphs the
opposite is true: the variational characterization is proven but I don’t think there is any analogue
of the DLR characterization of the entropy maximizers µǫ.

ii) A simplified version of the Gibbs phase rule, unproven except in specific examples, states: ‘Except
for a set of constraints ǫ of lower dimension, s(ǫ) is real analytic at ǫ.’ The main point of the
formalism: There exist simply stated examples (e.g. ‘hard spheres’) with multiple phases, i.e. for
which the region A ⊂ Y of analyticity of s(ǫ) is not connected.

iii) The formalism 1) – 5) seems to be easier to develop/analyze in graphs than in stat mech. In
particular the µǫ are simple enough to ‘understand’ (multipodal) in graph models.

iv) Note that for stat mech one can start in the grand canonical ensemble and derive the characteri-
zations of 5) using the Legendre transform, but this does not work for graphs; the grand canonical
ensemble loses information, and is misleading, for graphs.

v) A large deviations principle can be useful to derive the variational characterization of 5) but is not
necessary; the variational characterization was first developed in lattice stat mech by Ruelle (1965,
1967) without an underlying large deviations principle, though this path was later derived in the
1980’s.

Some questions

a) Do we want to say that the system of noninteracting particles forms an emergent ‘phase’?

b) Why can material phases be determined by so few parameters?
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